کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4598277 | 1336273 | 2007 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An explicit formula for the action of a finite group on a commutative ring
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let G be a finite group, k a commutative ring upon which G acts. For every subgroup H of G, the trace (or norm) map trH:kâkH is defined. trH is onto if and only if there exists an element xH such that trH(xH)=1. We will show that the existence of xP for every subgroup P of prime order determines the existence of xG by exhibiting an explicit formula for xG in terms of the xP, where P varies over prime order subgroups. Since trP is onto if and only if trgPgâ1 is, where gâG is an arbitrary element, we need to take only one P from each conjugacy class. We will also show why a formula with less factors does not exist, and show that the existence or non-existence of some of the xP's (where we consider only one P from each conjugacy class) does not affect the existence or non-existence of the others.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 211, Issue 1, October 2007, Pages 43-49
Journal: Journal of Pure and Applied Algebra - Volume 211, Issue 1, October 2007, Pages 43-49
نویسندگان
Ehud Meir,