کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4598359 | 1336279 | 2007 | 11 صفحه PDF | دانلود رایگان |

In [J. Herzog, H. Srinivasan, Bounds for multiplicities, Trans. Amer. Math. Soc. 350 (1998) 2879–2902], Herzog and Srinivasan study the relationship between the graded Betti numbers of a homogeneous ideal II in a polynomial ring RR and the degree of II. For certain classes of ideals, they prove a bound on the degree in terms of the largest and smallest Betti numbers, generalizing results of Huneke and Miller in [C. Huneke, M. Miller, A note on the multiplicity of Cohen–Macaulay algebras with pure resolutions, Canad. J. Math. 37 (1985) 1149–1162]. The bound is conjectured to hold in general; we study this using linkage. If R/IR/I is Cohen–Macaulay, we may reduce to the case where II defines a zero-dimensional subscheme YY. If YY is residual to a zero-scheme ZZ of a certain type (low degree or points in special position), then we show that the conjecture is true for IYIY.
Journal: Journal of Pure and Applied Algebra - Volume 210, Issue 2, August 2007, Pages 481–491