کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4598359 1336279 2007 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Betti numbers and degree bounds for some linked zero-schemes
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Betti numbers and degree bounds for some linked zero-schemes
چکیده انگلیسی

In [J. Herzog, H. Srinivasan, Bounds for multiplicities, Trans. Amer. Math. Soc. 350 (1998) 2879–2902], Herzog and Srinivasan study the relationship between the graded Betti numbers of a homogeneous ideal II in a polynomial ring RR and the degree of II. For certain classes of ideals, they prove a bound on the degree in terms of the largest and smallest Betti numbers, generalizing results of Huneke and Miller in [C. Huneke, M. Miller, A note on the multiplicity of Cohen–Macaulay algebras with pure resolutions, Canad. J. Math. 37 (1985) 1149–1162]. The bound is conjectured to hold in general; we study this using linkage. If R/IR/I is Cohen–Macaulay, we may reduce to the case where II defines a zero-dimensional subscheme YY. If YY is residual to a zero-scheme ZZ of a certain type (low degree or points in special position), then we show that the conjecture is true for IYIY.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pure and Applied Algebra - Volume 210, Issue 2, August 2007, Pages 481–491
نویسندگان
, , ,