کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4598432 1631082 2017 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Graph invertibility and median eigenvalues
ترجمه فارسی عنوان
معکوس پذیری نمودار و مقادیر ویژه میانه
کلمات کلیدی
معکوس نمودار؛ میانگین مقادیر متوسط؛ نمودار وزن
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
چکیده انگلیسی

Let (G,w)(G,w) be a weighted graph with a weight-function w:E(G)→R\{0}w:E(G)→R\{0}. A weighted graph (G,w)(G,w) is invertible to a new weighted graph if its adjacency matrix is invertible. Graph inverses have combinatorial interests and can be applied to bound median eigenvalues of graphs such as have physical meanings. In this paper, we characterize the inverse of a weighted graph based on its Sachs subgraphs that are spanning subgraphs with only K2K2 or cycles (or loops) as components. The characterization can be used to find the inverse of a weighted graph based on its structures instead of its adjacency matrix. If a graph has its spectra split about the origin, i.e., half of eigenvalues are positive and half of them are negative, then its median eigenvalues can be bounded by estimating the largest and smallest eigenvalues of its inverse. We characterize graphs with a unique Sachs subgraph and prove that these graphs has their spectra split about the origin if they have a perfect matching. As applications, we show that the median eigenvalues of stellated graphs of trees and corona graphs belong to different halves of the interval [−1,1][−1,1].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 513, 15 January 2017, Pages 304–323
نویسندگان
, , , ,