کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4598447 1631085 2016 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the Lipschitz continuity of the solution map in linear complementarity problems over second-order cone
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On the Lipschitz continuity of the solution map in linear complementarity problems over second-order cone
چکیده انگلیسی

Let K⊆IRn denote the second-order cone. Given an n×nn×n real matrix M   and a vector q∈IRn, the second-order cone linear complementarity problem SOLCP(M,q)SOLCP(M,q) is to find a vector x∈IRn such thatx∈K,y:=Mx+q∈KandyTx=0.We say that M∈QM∈Q if SOLCP(M,q)SOLCP(M,q) has a solution for all q∈IRn. An n×nn×n real matrix A is said to be a Z-matrix with respect to KK iff:x∈K,y∈KandxTy=0  ⟹xTMy≤0.Let ΦM(q)ΦM(q) denote the set of all solutions to SOLCP(M,q)SOLCP(M,q). The following results are shown in this paper:
• If M∈Z∩QM∈Z∩Q, then ΦMΦM is Lipschitz continuous if and only if M   is positive definite on the boundary of KK.
• If M   is symmetric, then ΦMΦM is Lipschitz continuous if and only if M is positive definite.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 510, 1 December 2016, Pages 146–159
نویسندگان
, ,