کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4598492 1631089 2016 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Birkhoff–James orthogonality and smoothness of bounded linear operators
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Birkhoff–James orthogonality and smoothness of bounded linear operators
چکیده انگلیسی

We present a sufficient condition for smoothness of bounded linear operators on Banach spaces for the first time. Let T,A∈B(X,Y)T,A∈B(X,Y), where XX is a real Banach space and YY is a real normed linear space. We find sufficient condition for T⊥BA⇔Tx⊥BAxT⊥BA⇔Tx⊥BAx for some x∈SXx∈SX with ‖Tx‖=‖T‖‖Tx‖=‖T‖, and use it to show that T   is a smooth point in B(X,Y)B(X,Y) if T   attains its norm at unique (upto multiplication by scalar) vector x∈SXx∈SX, Tx   is a smooth point of YY and supy∈C‖Ty‖<‖T‖supy∈C‖Ty‖<‖T‖ for all closed subsets C   of SXSX with d(±x,C)>0d(±x,C)>0. For operators on a Hilbert space HH we show that T⊥BA⇔Tx⊥BAxT⊥BA⇔Tx⊥BAx for some x∈SHx∈SH with ‖Tx‖=‖T‖‖Tx‖=‖T‖ if and only if the norm attaining set MT={x∈SH:‖Tx‖=‖T‖}=SH0MT={x∈SH:‖Tx‖=‖T‖}=SH0 for some finite dimensional subspace H0H0 and ‖T‖Ho⊥<‖T‖‖T‖Ho⊥<‖T‖. We also characterize smoothness of compact operators on normed spaces and bounded linear operators on Hilbert spaces.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 506, 1 October 2016, Pages 551–563
نویسندگان
, , ,