کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4598592 1631095 2016 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Characterization of extremal graphs from distance signless Laplacian eigenvalues
ترجمه فارسی عنوان
خصوصیات گراف های افقی از مقادیر ویژه لاپلاسایی معکوس فاصله
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
چکیده انگلیسی

Let G=(V,E) be a connected graph with vertex set V(G)={v1,v2,…,vn} and edge set E(G)E(G). The transmission Tr(vi)Tr(vi) of vertex vivi is defined to be the sum of distances from vivi to all other vertices. Let Tr(G)Tr(G) be the n×nn×n diagonal matrix with its (i,i)-entry equal to TrG(vi)TrG(vi). The distance signless Laplacian is defined as DQ(G)=Tr(G)+D(G)DQ(G)=Tr(G)+D(G), where D(G)D(G) is the distance matrix of G  . Let ∂1(G)≥∂2(G)≥⋯≥∂n(G)∂1(G)≥∂2(G)≥⋯≥∂n(G) denote the eigenvalues of distance signless Laplacian matrix of G  . In this paper, we first characterize all graphs with ∂n(G)=n−2∂n(G)=n−2. Secondly, we characterize all graphs with ∂2(G)∈[n−2,n]∂2(G)∈[n−2,n] when n≥11n≥11. Furthermore, we give the lower bound on ∂2(G)∂2(G) with independence number α and the extremal graph is also characterized.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 500, 1 July 2016, Pages 77–87
نویسندگان
, ,