کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4598795 1631105 2016 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The proof of a conjecture on largest Laplacian and signless Laplacian H-eigenvalues of uniform hypergraphs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
The proof of a conjecture on largest Laplacian and signless Laplacian H-eigenvalues of uniform hypergraphs
چکیده انگلیسی

Let A(G),L(G)A(G),L(G) and Q(G)Q(G) be the adjacency tensor, Laplacian tensor and signless Laplacian tensor of uniform hypergraph G  , respectively. Denote by λ(T)λ(T) the largest H-eigenvalue of tensor TT. Let H   be a uniform hypergraph, and H′H′ be obtained from H   by inserting a new vertex with degree one in each edge. We prove that λ(Q(H′))≤λ(Q(H))λ(Q(H′))≤λ(Q(H)). Denote by GkGk the kth power hypergraph of an ordinary graph G   with maximum degree Δ≥2Δ≥2. We prove that {λ(Q(Gk))}{λ(Q(Gk))} is a strictly decreasing sequence, which implies Conjecture 4.1 of Hu, Qi and Shao in [4]. We also prove that λ(Q(Gk))λ(Q(Gk)) converges to Δ when k goes to infinity. The definition of k  th power hypergraph GkGk has been generalized as Gk,sGk,s. We also prove some eigenvalues properties about A(Gk,s)A(Gk,s), which generalize some known results. Some related results about L(G)L(G) are also mentioned.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 490, 1 February 2016, Pages 18–30
نویسندگان
, , ,