کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4599143 1631124 2015 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Cauchy pairs and Cauchy matrices
ترجمه فارسی عنوان
جفت کوکی و ماتریس کوشی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
چکیده انگلیسی
Let K denote a field and let X denote a finite non-empty set. Let MatX(K) denote the K-algebra consisting of the matrices with entries in K and rows and columns indexed by X. A matrix C∈MatX(K) is called Cauchy whenever there exist mutually distinct scalars {xi}i∈X,{x˜i}i∈X from K such that Cij=(xi−x˜j)−1 for i,j∈X. In this paper, we give a linear algebraic characterization of a Cauchy matrix. To do so, we introduce the notion of a Cauchy pair. A Cauchy pair is an ordered pair of diagonalizable linear transformations (X,X˜) on a finite-dimensional vector space V such that X−X˜ has rank 1 and such that there does not exist a proper subspace W of V such that XW⊆W and X˜W⊆W. Let V denote a vector space over K with dimension |X|. We show that for every Cauchy pair (X,X˜) on V, there exists an X-eigenbasis {vi}i∈X for V and an X˜-eigenbasis {wi}i∈X for V such that the transition matrix from {vi}i∈X to {wi}i∈X is Cauchy. We show that every Cauchy matrix arises as a transition matrix for a Cauchy pair in this way. We give a bijection between the set of equivalence classes of Cauchy pairs on V and the set of permutation equivalence classes of Cauchy matrices in MatX(K).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 471, 15 April 2015, Pages 320-345
نویسندگان
,