کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
4599171 1631122 2015 23 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
Distributions of eigenvalues of large Euclidean matrices generated from lplp balls and spheres
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله چکیده انگلیسی

Let x1,…,xnx1,…,xn be points randomly chosen from a set G⊂RNG⊂RN and f(x)f(x) be a function. The Euclidean random matrix is given by Mn=(f(‖xi−xj‖2))n×nMn=(f(‖xi−xj‖2))n×n where ‖⋅‖‖⋅‖ is the Euclidean distance. When N   is fixed and n→∞n→∞ we prove that μˆ(Mn), the empirical distribution of the eigenvalues of MnMn, converges to δ0δ0 for a big class of functions of f(x)f(x). Assuming both N and n   go to infinity proportionally, we obtain the explicit limit of μˆ(Mn) when G   is the lplp unit ball or sphere with p⩾1p⩾1. As corollaries, we obtain the limit of μˆ(An) with An=(d(xi,xj))n×nAn=(d(xi,xj))n×n and d   being the geodesic distance on the ordinary unit sphere in RNRN. We also obtain the limit of μˆ(An) for the Euclidean distance matrix An=(‖xi−xj‖)n×nAn=(‖xi−xj‖)n×n. The limits are a+bVa+bV where a and b are constants and V   follows the Marčenko–Pastur law. The same are also obtained for other examples appeared in physics literature including (exp⁡(−‖xi−xj‖γ))n×n(exp⁡(−‖xi−xj‖γ))n×n and (exp⁡(−d(xi,xj)γ))n×n(exp⁡(−d(xi,xj)γ))n×n. Our results partially confirm a conjecture by Do and Vu .

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 473, 15 May 2015, Pages 14–36
نویسندگان
,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت