کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4599228 1631123 2015 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the Faria's inequality for the Laplacian and signless Laplacian spectra: A unified approach
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On the Faria's inequality for the Laplacian and signless Laplacian spectra: A unified approach
چکیده انگلیسی

Let p(G)p(G) and q(G)q(G) be the number of pendant vertices and quasi-pendant vertices of a simple undirected graph G  , respectively. Let mL±(G)(1)mL±(G)(1) be the multiplicity of 1 as eigenvalue of a matrix which can be either the Laplacian or the signless Laplacian of a graph G  . A result due to I. Faria states that mL±(G)(1)mL±(G)(1) is bounded below by p(G)−q(G)p(G)−q(G). Let r(G)r(G) be the number of internal vertices of G  . If r(G)=q(G)r(G)=q(G), following a unified approach we prove that mL±(G)(1)=p(G)−q(G)mL±(G)(1)=p(G)−q(G). If r(G)>q(G)r(G)>q(G) then we determine the equality mL±(G)(1)=p(G)−q(G)+mN±(1)mL±(G)(1)=p(G)−q(G)+mN±(1), where mN±(1)mN±(1) denotes the multiplicity of 1 as eigenvalue of a matrix N±N±. This matrix is obtained from either the Laplacian or signless Laplacian matrix of the subgraph induced by the internal vertices which are non-quasi-pendant vertices. Furthermore, conditions for 1 to be an eigenvalue of a principal submatrix are deduced and applied to some families of graphs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 472, 1 May 2015, Pages 81–96
نویسندگان
, , , ,