کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4599295 1631131 2015 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
First order structured perturbation theory for multiple zero eigenvalues of skew-adjoint matrices
ترجمه فارسی عنوان
تئوری وقوع ساختار یافته برای نظریه مرتبه اول برای مقادیر مختلف صفر ماتریسهای متضاد مبهم
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
چکیده انگلیسی

Given a matrix belonging to some class of structured matrices, we consider the question of comparing the sensitivity of its eigenvalues under two different kinds of perturbations, either unstructured (i.e., arbitrary) or structured (i.e., those belonging to the same class of matrices as the unperturbed one). In a previous paper (Kressner et al., 2009 [13]), the authors compared the structured and unstructured condition numbers of (possibly multiple) eigenvalues for several different matrix and pencil structures. Only one case was left out of the analysis, namely the one where the asymptotic order of perturbed eigenvalues under structured perturbations is different from the asymptotic order under unstructured ones. This is precisely the case we consider in the present paper: given a matrix which is skew-adjoint with respect to a symmetric scalar product and has a zero eigenvalue with a certain Jordan structure, first order expansions are obtained for the perturbed eigenvalues under structured perturbation, as well as bounds on the structured condition number. Similar results are obtained for structured perturbations of symmetric/skew-symmetric and palindromic matrix pencils.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 464, 1 January 2015, Pages 3-27