کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4599380 | 1631135 | 2014 | 30 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Structured strong linearizations from Fiedler pencils with repetition I
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In many applications, the polynomial eigenvalue problem, P(λ)x=0, arises with P(λ) being a structured matrix polynomial (for example, palindromic, symmetric, skew-symmetric). In order to solve a structured polynomial eigenvalue problem it is convenient to use strong linearizations with the same structure as P(λ) to ensure that the symmetries in the eigenvalues due to that structure are preserved in numerical computations. In this paper we characterize all the pencils in the family of the Fiedler pencils with repetition, introduced by Vologiannidis and Antoniou [25], associated with a square matrix polynomial P(λ) that are block-symmetric for every matrix polynomial P(λ). We show that this family of pencils is precisely the set of all Fiedler pencils with repetition that are symmetric when P(λ) is. When some generic nonsingularity conditions are satisfied, these pencils are strong linearizations of P(λ). In particular, our family strictly contains the standard basis for DL(P), a k-dimensional vector space of symmetric pencils introduced by Mackey, Mackey, Mehl, and Mehrmann [20].
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 460, 1 November 2014, Pages 51-80
Journal: Linear Algebra and its Applications - Volume 460, 1 November 2014, Pages 51-80
نویسندگان
M.I. Bueno, K. Curlett, S. Furtado,