کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4599522 1631143 2014 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Products of elementary and idempotent matrices over integral domains
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Products of elementary and idempotent matrices over integral domains
چکیده انگلیسی

A ring R such that invertible matrices over R   are products of elementary matrices, is called (after Cohn) generalized Euclidean. Extending results proved by Ruitenburg for Bézout domains, characterizations of generalized Euclidean commutative domains are obtained, that relate them with the property that singular matrices are products of idempotent matrices. This latter property is investigated, focusing on 2×22×2 matrices, which is not restrictive in the context of Bézout domains. It is proved that domains R  , that satisfy a suitable property of ideals called (princ), are necessarily Bézout domains if 2×22×2 singular matrices over R are products of idempotent matrices. The class of rings satisfying (princ) includes factorial and projective-free domains. The connection with the existence of a weak Euclidean algorithm, a notion introduced by O'Meara for Dedekind domains, is also investigated.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 452, 1 July 2014, Pages 130–152
نویسندگان
, ,