کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4599751 | 1631150 | 2014 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Perturbations on constructible lists preserving realizability in the NIEP and questions of Monov
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In [5] the authors showed that if σ=(λ1,λ2,λ2¯,λ4,…,λn) is realizable where λ1λ1 is the Perron eigenvalue and λ2λ2 is non-real, then so too is σ=(λ1+4t,λ2+t,λ2¯+t,λ4,…,λn). They asked if 4 can be replaced by 1 or 2 or what is the least possible multiple c⩾1c⩾1 of t in order for this perturbation to be realizable. In [2] the authors showed that for n=4n=4 one can find certain spectra for which the result holds when c=1c=1 provided t is “small”. In this paper we show that c=2c=2 is best possible and we construct a realizing matrix for c=2c=2 when t is sufficiently small. We also address some questions of Monov concerning the realizability of the derivative of a realizable polynomial and if such a polynomial must have positive power sums.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 445, 15 March 2014, Pages 206–222
Journal: Linear Algebra and its Applications - Volume 445, 15 March 2014, Pages 206–222
نویسندگان
Anthony G. Cronin, Thomas J. Laffey,