کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4599751 1631150 2014 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Perturbations on constructible lists preserving realizability in the NIEP and questions of Monov
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Perturbations on constructible lists preserving realizability in the NIEP and questions of Monov
چکیده انگلیسی

In [5] the authors showed that if σ=(λ1,λ2,λ2¯,λ4,…,λn) is realizable where λ1λ1 is the Perron eigenvalue and λ2λ2 is non-real, then so too is σ=(λ1+4t,λ2+t,λ2¯+t,λ4,…,λn). They asked if 4 can be replaced by 1 or 2 or what is the least possible multiple c⩾1c⩾1 of t in order for this perturbation to be realizable. In [2] the authors showed that for n=4n=4 one can find certain spectra for which the result holds when c=1c=1 provided t   is “small”. In this paper we show that c=2c=2 is best possible and we construct a realizing matrix for c=2c=2 when t is sufficiently small. We also address some questions of Monov concerning the realizability of the derivative of a realizable polynomial and if such a polynomial must have positive power sums.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 445, 15 March 2014, Pages 206–222
نویسندگان
, ,