کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4599840 1336825 2013 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The signless Laplacian coefficients and incidence energy of bicyclic graphs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
The signless Laplacian coefficients and incidence energy of bicyclic graphs
چکیده انگلیسی

Let Q(G;x)=det(xI−Q(G))=∑i=1n(−1)iφixn−i be the characteristic polynomial of the signless Laplacian matrix of a graph G of order n  . This paper investigates how the signless Laplacian coefficients (i.e., coefficients of Q(G;x)Q(G;x)) change after some graph transformations. These results are used to prove that the set (Bn,⪯)(Bn,⪯) of all bicyclic graphs of order n has exactly two minimal elements with respect to the partial ordering of their coefficients. Furthermore, we present a sharp lower bound for the incidence energy of bicyclic graphs of order n and characterize all extremal graphs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 439, Issue 12, 15 December 2013, Pages 3859–3869
نویسندگان
, ,