کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4599873 1336826 2013 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Instability indices for matrix polynomials
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Instability indices for matrix polynomials
چکیده انگلیسی
There is a well-established instability index theory for linear and quadratic matrix polynomials for which the coefficient matrices are Hermitian and skew-Hermitian. This theory relates the number of negative directions for the matrix coefficients which are Hermitian to the total number of unstable eigenvalues for the polynomial. Herein we extend the theory to ⋆-even matrix polynomials of any finite degree. In particular, unlike previously known cases we show that the instability index depends upon the size of the matrices when the degree of the polynomial is greater than two. We also consider Hermitian matrix polynomials, and derive an index which counts the number of eigenvalues with nonpositive imaginary part. The results are refined if we consider the Hermitian matrix polynomial to be a perturbation of a ⋆-even polynomials; however, this refinement requires additional assumptions on the matrix coefficients.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 439, Issue 11, 1 December 2013, Pages 3412-3434
نویسندگان
, , , ,