کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4599879 | 1336826 | 2013 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Block tridiagonal reduction of perturbed normal and rank structured matrices
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
It is well known that if a matrix A∈Cn×nA∈Cn×n solves the matrix equation f(A,AH)=0f(A,AH)=0, where f(x,y)f(x,y) is a linear bivariate polynomial, then A is normal; A and AHAH can be simultaneously reduced in a finite number of operations to tridiagonal form by a unitary congruence and, moreover, the spectrum of A is located on a straight line in the complex plane. In this paper we present some generalizations of these properties for almost normal matrices which satisfy certain quadratic matrix equations arising in the study of structured eigenvalue problems for perturbed Hermitian and unitary matrices.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 439, Issue 11, 1 December 2013, Pages 3505–3517
Journal: Linear Algebra and its Applications - Volume 439, Issue 11, 1 December 2013, Pages 3505–3517
نویسندگان
Roberto Bevilacqua, Gianna M. Del Corso, Luca Gemignani,