کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4600205 1336840 2013 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On Levi extensions of nilpotent Lie algebras
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On Levi extensions of nilpotent Lie algebras
چکیده انگلیسی

Levi’s theorem decomposes any arbitrary Lie algebra over a field of characteristic zero, as a direct sum of a semisimple Lie algebra (named Levi factor) and its solvable radical. Given a solvable Lie algebra R, a semisimple Lie algebra S is said to be a Levi extension of R in case a Lie structure can be defined on the vector space S⊕R. The assertion is equivalent to ρ(S)⊆Der(R), where Der(R) is the derivation algebra of R, for some representation ρ of S onto R. Our goal in this paper, is to present some general structure results on nilpotent Lie algebras admitting Levi extensions based on free nilpotent Lie algebras and modules of semisimple Lie algebras. In low nilpotent index a complete classification will be given. The results are based on linear algebra methods and leads to computational algorithms.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 439, Issue 5, 1 September 2013, Pages 1441-1457