کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4600300 1336843 2013 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Solving polynomial eigenvalue problems by means of the Ehrlich–Aberth method
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Solving polynomial eigenvalue problems by means of the Ehrlich–Aberth method
چکیده انگلیسی

Given the n×n matrix polynomial , we consider the associated polynomial eigenvalue problem. This problem, viewed in terms of computing the roots of the scalar polynomial detP(x), is treated in polynomial form rather than in matrix form by means of the Ehrlich–Aberth iteration. The main computational issues are discussed, namely, the choice of the starting approximations needed to start the Ehrlich–Aberth iteration, the computation of the Newton correction, the halting criterion, and the treatment of eigenvalues at infinity. We arrive at an effective implementation which provides more accurate approximations to the eigenvalues with respect to the methods based on the QZ algorithm. The case of polynomials having special structures, like palindromic, Hamiltonian, symplectic, etc., where the eigenvalues have special symmetries in the complex plane, is considered. A general way to adapt the Ehrlich–Aberth iteration to structured matrix polynomials is introduced. Numerical experiments which confirm the effectiveness of this approach are reported.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 439, Issue 4, 15 August 2013, Pages 1130-1149