کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4600404 1336848 2012 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Low-rank incremental methods for computing dominant singular subspaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Low-rank incremental methods for computing dominant singular subspaces
چکیده انگلیسی

Computing the singular values and vectors of a matrix is a crucial kernel in numerous scientific and industrial applications. As such, numerous methods have been proposed to handle this problem in a computationally efficient way. This paper considers a family of methods for incrementally computing the dominant SVD of a large matrix A. Specifically, we describe a unification of a number of previously independent methods for approximating the dominant SVD after a single pass through A. We connect the behavior of these methods to that of a class of optimization-based iterative eigensolvers on ATA. An iterative procedure is proposed which allows the computation of an accurate dominant SVD using multiple passes through A. We present an analysis of the convergence of this iteration and provide empirical demonstration of the proposed method on both synthetic and benchmark data.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 436, Issue 8, 15 April 2012, Pages 2866-2888