کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4600461 1336851 2013 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Matrices uniquely determined by their lonesums
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Matrices uniquely determined by their lonesums
چکیده انگلیسی

A matrix is lonesum if it can be uniquely reconstructed from its row and column sums. Brewbaker computed the number of m×n binary lonesum matrices. Kaneko defined the poly-Bernoulli numbers of an integer index, and showed that the number of m×n binary lonesum matrices is equal to the mth poly-Bernoulli number of index -n. In this paper, we are interested in q-ary lonesum matrices. There are two types of lonesumness for q-ary matrices, namely strongly and weakly lonesum. We first study strongly lonesum matrices: We compute the number of m×n q-ary strongly lonesum matrices, and provide a generalization of Kaneko’s formulas by deriving the generating function for the number of m×n q-ary strongly lonesum matrices. Next, we study weakly lonesum matrices: We show that the number of forbidden patterns for q-ary weakly lonesum matrices is infinite if q⩾5, and construct some forbidden patterns for q=3,4. We also suggest an open problem related to ternary and quaternary weakly lonesum matrices.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 438, Issue 7, 1 April 2013, Pages 3107-3123