کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4600575 | 1336853 | 2013 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The proof of a conjecture on the lewin number of primitive non-powerful signed digraphs
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Suppose S is a primitive non-powerful signed digraph. A pair of SSSD walks of S are two directed walks of S, which have the same initial vertex, same terminal vertex and same length, but different signs. The lewin number of S, denoted l(S), is the least positive integer k such that there are both SSSD walks of lengths k and k+1 from some vertex u to some vertex v (possibly u again) of S. This paper presents a proof of a conjecture on l(S), which was put forward by You et al. [L.H. You, M.H. Liu, B.L. Liu, Bounds on the lewin number for primitive non-powerful signed digraphs, Acta Math. Appl. Sinica 35 (2012) 396–407].
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 438, Issue 5, 1 March 2013, Pages 2366-2377
Journal: Linear Algebra and its Applications - Volume 438, Issue 5, 1 March 2013, Pages 2366-2377