کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4600630 | 1336856 | 2013 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On graphs whose Laplacian index does not exceed 4.5
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let A(G) and D(G) be the adjacency matrix and the vertex degree matrix of a graph G, respectively. The Laplacian matrix of G is defined as L(G) = D(G) − A(G). The L-index of G, denoted by μ(G), is the largest root of the characteristic polynomial of L(G). The Laplacian Hoffman limit value H(L) is the limit of μ(Hn), where the graph Hn is obtained by attaching a pendant edge to the cycle Cn-1 of length n-1. It is known that H(L) = 2 + ϵ, where ϵ is the largest root of x3-4x-4. In this paper we characterize the structure of graphs whose L-index does not exceed 4.5, and we completely describe those graphs whose L-index does not exceed H(L). By doing so we complete the so-called Hoffman program w.r.t. the Laplacian theory of graph spectra.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 438, Issue 4, 15 February 2013, Pages 1541-1550
Journal: Linear Algebra and its Applications - Volume 438, Issue 4, 15 February 2013, Pages 1541-1550