کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4600675 1336857 2013 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Monotonically convergent algorithms for symmetric tensor approximation
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Monotonically convergent algorithms for symmetric tensor approximation
چکیده انگلیسی

Reduced rank approximations to symmetric tensors find use in data compaction and in multi-user blind source separation. We derive iterative algorithms which feature monotonic convergence to a minimum of a Frobenius norm approximation criterion, for a certain rank-r Tucker product version of the approximation problem. The approach exploits the gradient inequality for convex functions to establish monotonic convergence, while sparing the cumbersome step size analysis required from a manifold gradient approach. It likewise overcomes some limitations of symmetric versions of alternating least-squares. The computational load per iteration amounts to computing an unfolded matrix and a QR decomposition.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 438, Issue 2, 15 January 2013, Pages 875-890