کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4600723 1336859 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Graphs whose signless Laplacian spectral radius does not exceed the Hoffman limit value
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Graphs whose signless Laplacian spectral radius does not exceed the Hoffman limit value
چکیده انگلیسی

For a graph matrix M, the Hoffman limit value H(M) is the limit (if it exists) of the largest eigenvalue (or, M-index, for short) of M(Hn), where the graph Hn is obtained by attaching a pendant edge to the cycle Cn-1 of length n-1. In spectral graph theory, M is usually either the adjacency matrix A or the Laplacian matrix L or the signless Laplacian matrix Q. The exact values of H(A) and H(L) were first determined by Hoffman and Guo, respectively. Since Hn is bipartite for odd n, we have H(Q)=H(L). All graphs whose A-index is not greater than H(A) were completely described in the literature. In the present paper, we determine all graphs whose Q-index does not exceed H(Q). The results obtained are determinant to describe all graphs whose L-index is not greater then H(L). This is done precisely in Wang et al. (in press) [21].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 435, Issue 11, 1 December 2011, Pages 2913-2920