کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4600796 1336863 2012 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The quasi-Weierstraß form for regular matrix pencils
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
The quasi-Weierstraß form for regular matrix pencils
چکیده انگلیسی

Regular linear matrix pencils A-E∂∈Kn×n[∂], where K=Q, R or C, and the associated differential algebraic equation (DAE) are studied. The Wong sequences of subspaces are investigate and invoked to decompose the Kn into V∗⊕W∗, where any bases of the linear spaces V∗ and W∗ transform the matrix pencil into the quasi-Weierstraß form. The quasi-Weierstraß form of the matrix pencil decouples the original DAE into the underlying ODE and the pure DAE or, in other words, decouples the set of initial values into the set of consistent initial values V∗ and “pure” inconsistent initial values W∗⧹{0}. Furthermore, V∗ and W∗ are spanned by the generalized eigenvectors at the finite and infinite eigenvalues, resp. The quasi-Weierstraß form is used to show how chains of generalized eigenvectors at finite and infinite eigenvalues of A-E∂ lead to the well-known Weierstraß form. So the latter can be viewed as a generalized Jordan form. Finally, it is shown how eigenvector chains constitute a basis for the solution space of .

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 436, Issue 10, 15 May 2012, Pages 4052-4069