کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4600828 1336864 2011 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Two spectral characterizations of regular, bipartite graphs with five eigenvalues
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Two spectral characterizations of regular, bipartite graphs with five eigenvalues
چکیده انگلیسی

Graphs with a few distinct eigenvalues usually possess an interesting combinatorial structure. We show that regular, bipartite graphs with at most six distinct eigenvalues have the property that each vertex belongs to the constant number of quadrangles. This enables to determine, from the spectrum alone, the feasible families of numbers of common neighbors for each vertex with other vertices in its part. For particular spectra, such as [6,29,06,-29,-6] (where exponents denote eigenvalue multiplicities), there is a unique such family, which makes it possible to characterize all graphs with this spectrum.Using this lemma we also to show that, for r⩾2, a graph has spectrum if and only if it is a graph of a 1-resolvable transversal design TD(r,r), i.e., if it corresponds to the complete set of mutually orthogonal Latin squares of size r in a well-defined manner.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 435, Issue 10, 15 November 2011, Pages 2612-2625