کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4600836 1336865 2012 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Distance bounds for prescribed multiple eigenvalues of matrix polynomials
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Distance bounds for prescribed multiple eigenvalues of matrix polynomials
چکیده انگلیسی

In this paper, motivated by a problem posed by Wilkinson, we study the coefficient perturbations of a (square) matrix polynomial to a matrix polynomial that has a prescribed eigenvalue of specified algebraic multiplicity and index of annihilation. For an n×n matrix polynomial P(λ) and a given scalar μ∈C, we introduce two weighted spectral norm distances, Er(μ) and Er,k(μ), from P(λ) to the n×n matrix polynomials that have μ as an eigenvalue of algebraic multiplicity at least r and to those that have μ as an eigenvalue of algebraic multiplicity at least r and maximum Jordan chain length (exactly) k, respectively. Then we obtain a lower bound for Er,k(μ), and derive an upper bound for Er(μ) by constructing an associated perturbation of P(λ).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 436, Issue 11, 1 June 2012, Pages 4107-4119