کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4600851 1336865 2012 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bias-corrected AIC for selecting variables in multinomial logistic regression models
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Bias-corrected AIC for selecting variables in multinomial logistic regression models
چکیده انگلیسی

In this paper, we consider the bias correction of Akaike’s information criterion (AIC) for selecting variables in multinomial logistic regression models. For simplifying a formula of the bias-corrected AIC, we calculate the bias of the AIC to a risk function through the expectations of partial derivatives of the negative log-likelihood function. As a result, we can express the bias correction term of the bias-corrected AIC with only three matrices consisting of the second, third, and fourth derivatives of the negative log-likelihood function. By conducting numerical studies, we verify that the proposed bias-corrected AIC performs better than the crude AIC.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 436, Issue 11, 1 June 2012, Pages 4329-4341