کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4600859 1336866 2011 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Cycle extendability in graphs and digraphs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Cycle extendability in graphs and digraphs
چکیده انگلیسی

In 1990, Hendry conjectured that all chordal Hamiltonian graphs are cycle extendable, that is, the vertices of each non-Hamiltonian cycle are contained in a cycle of length one greater. Let A be a symmetric (0,1)-matrix with zero main diagonal such that A is the adjacency matrix of a chordal Hamiltonian graph. Hendry’s conjecture in this case is that every k×k principle submatrix of A that dominates a full cycle permutation k×k matrix is a principle submatrix of a (k+1)×(k+1) principle submatrix of A that dominates a (k+1)×(k+1) full cycle permutation matrix. This article generalizes the concept of cycle-extendability to S-extendable; that is, with S⊆{1,2,…,n} and G a graph on n vertices, G is S-extendable if the vertices of every non-Hamiltonian cycle are contained in a cycle length i greater, where i∈S. We investigate this concept in directed graphs and in particular tournaments, i.e., anti-symmetric matrices with zero main diagonal.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 435, Issue 7, 1 October 2011, Pages 1513-1519