کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4600891 1336867 2012 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Lower bounds for minimum semidefinite rank from orthogonal removal and chordal supergraphs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Lower bounds for minimum semidefinite rank from orthogonal removal and chordal supergraphs
چکیده انگلیسی

The minimum semidefinite rank (msr) of a graph is the minimum rank among positive semidefinite matrices with the given graph. The OS-number is a useful lower bound for msr, which arises by considering ordered vertex sets with some connectivity properties. In this paper, we develop two new interpretations of the OS-number. We first show that OS-number is also equal to the maximum number of vertices which can be orthogonally removed from a graph under certain nondegeneracy conditions. Our second interpretation of the OS-number is as the maximum possible rank of chordal supergraphs who exhibit a notion of connectivity we call isolation-preserving. These interpretations not only give insight into the OS-number, but also allow us to prove some new results. For example we show that msr(G) = |G| − 2 if and only if OS(G) = |Gzsfnc − 2.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 436, Issue 3, 1 February 2012, Pages 525-536