کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4600941 1336869 2012 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Double piling structure of matrix monotone functions and of matrix convex functions II
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Double piling structure of matrix monotone functions and of matrix convex functions II
چکیده انگلیسی

We continue the analysis in [H. Osaka, J. Tomiyama, Double piling structure of matrix monotone functions and of matrix convex functions, Linear and its Applications 431 (2009) 1825–1832] in which the followings three assertions at each label n are discussed:(1)f(0)⩽0f(0)⩽0 and f is n  -convex in [0,α)[0,α)(2)For each matrix a   with its spectrum in [0,α)[0,α) and a contraction c   in the matrix algebra MnMn,f(c∗ac)⩽c∗f(a)c.f(c∗ac)⩽c∗f(a)c.(3)The function f(t)/tf(t)/t(=g(t))(=g(t)) is n  -monotone in (0,α)(0,α).We know that two conditions (2)(2) and (3)(3) are equivalent and if ff with f(0)≤0f(0)≤0 is nn-convex, then gg is (n-1)(n-1)-monotone. In this note we consider several extra conditions on ff or gg to conclude that the implication from (3)(3) to (1)(1) is true. In particular, we study a class Qn([0,α))Qn([0,α)) of functions with conditional positive Lowner matrix which contains the class of matrix nn-monotone functions and show that if f∈Qn+1([0,α))f∈Qn+1([0,α)) with f(0)=0f(0)=0 and gg is nn-monotone, then ff is nn-convex. We also discuss about the local property of nn-convexity.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 437, Issue 3, 1 August 2012, Pages 735–748
نویسندگان
, ,