کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4600942 1336869 2012 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Sets of nonnegative matrices without positive products
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Sets of nonnegative matrices without positive products
چکیده انگلیسی

For an arbitrary irreducible set of nonnegative d×d-matrices, we consider the following problem: does there exist a strictly positive product (with repetitions permitted) of those matrices? Under some general assumptions, we prove that if it does not exist, then there is a partition of the set of basis vectors of Rd, on which all given matrices act as permutations. Moreover, there always exists a unique maximal partition (with the maximal number of parts) possessing this property, and the number of parts is expressed by eigenvalues of matrices. This generalizes well-known results of Perron–Frobenius theory on primitivity of one matrix to families of matrices. We present a polynomial algorithm to decide the existence of a positive product for a given finite set of matrices and to build the maximal partition. Similar results are obtained for scrambling products. Applications to the study of Lyapunov exponents, inhomogeneous Markov chains, etc. are discussed.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 437, Issue 3, 1 August 2012, Pages 749-765