کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4600948 1336869 2012 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Formulas for calculating the extremum ranks and inertias of a four-term quadratic matrix-valued function and their applications
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Formulas for calculating the extremum ranks and inertias of a four-term quadratic matrix-valued function and their applications
چکیده انگلیسی

This paper studies the quadratic matrix-valued functionϕ(X)=DXAX∗D∗+DXB+B∗X∗D∗+Cϕ(X)=DXAX∗D∗+DXB+B∗X∗D∗+Cthrough some expansion formulas for ranks and inertias of Hermitian matrices, where A, B, C and D are given complex matrices with A and C Hermitian, X   is a variable matrix, and (·)∗(·)∗ denotes the conjugate transpose of a complex matrix. We first introduce an algebraic linearization method for studying this matrix-valued function, and establish a group of explicit formulas for calculating the global maximum and minimum ranks and inertias of this matrix-valued function with respect to the variable matrix X. We then use these rank and inertia formulas to derive:(i)necessary and sufficient conditions for the matrix equation ϕ(X)=0ϕ(X)=0 to have a solution, as well as the four matrix inequalities ϕ(X)>(⩾,<,⩽)0 in the Löwner partial ordering to be feasible, respectively;(ii)necessary and sufficient conditions for the four matrix inequalities ϕ(X)>(⩾,<,⩽)0 in the Löwner partial ordering to hold for all matrices X, respectively;(iii)the two matrices X^ and X∼ such that the inequalities ϕ(X)⩾ϕ(X^) and ϕ(X)⩽ϕ(X∼) hold for all matrices X in the Löwner partial ordering, respectively.An application of the quadratic matrix-valued function in control theory is also presented.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 437, Issue 3, 1 August 2012, Pages 835–859
نویسندگان
,