کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4600976 | 1336870 | 2011 | 29 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Darboux transformations of Jacobi matrices and Padé approximation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let J be a monic Jacobi matrix associated with the Cauchy transform F of a probability measure. We construct a pair of the lower and upper triangular block matrices L and U such that J=LU and the matrix JC=UL is a monic generalized Jacobi matrix associated with the function FC(λ)=λF(λ)+1. It turns out that the Christoffel transformation JC of a bounded monic Jacobi matrix J can be unbounded. This phenomenon is shown to be related to the effect of accumulating at ∞ of the poles of the Padé approximants of the function FC although FC is holomorphic at ∞. The case of the UL-factorization of J is considered as well.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 435, Issue 12, 15 December 2011, Pages 3056-3084
Journal: Linear Algebra and its Applications - Volume 435, Issue 12, 15 December 2011, Pages 3056-3084