کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4600980 1336870 2011 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The eigenvalue problem for linear and affine iterated function systems
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
The eigenvalue problem for linear and affine iterated function systems
چکیده انگلیسی

The eigenvalue problem for a linear function L centers on solving the eigen-equation . This paper generalizes the eigenvalue problem from a single linear function to an iterated function system F consisting of possibly an infinite number of linear or affine functions. The eigen-equation becomes F(X)=λX, where λ>0 is real, X is a compact set, and F(X)=⋃f∈Ff(X). The main result is that an irreducible, linear iterated function system F has a unique eigenvalue λ equal to the joint spectral radius of the functions in F and a corresponding eigenset S that is centrally symmetric, star-shaped, and full dimensional. Results of Barabanov and of Dranisnikov–Konyagin–Protasov on the joint spectral radius follow as corollaries.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 435, Issue 12, 15 December 2011, Pages 3124-3138