کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4600980 | 1336870 | 2011 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The eigenvalue problem for linear and affine iterated function systems
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The eigenvalue problem for a linear function L centers on solving the eigen-equation . This paper generalizes the eigenvalue problem from a single linear function to an iterated function system F consisting of possibly an infinite number of linear or affine functions. The eigen-equation becomes F(X)=λX, where λ>0 is real, X is a compact set, and F(X)=⋃f∈Ff(X). The main result is that an irreducible, linear iterated function system F has a unique eigenvalue λ equal to the joint spectral radius of the functions in F and a corresponding eigenset S that is centrally symmetric, star-shaped, and full dimensional. Results of Barabanov and of Dranisnikov–Konyagin–Protasov on the joint spectral radius follow as corollaries.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 435, Issue 12, 15 December 2011, Pages 3124-3138
Journal: Linear Algebra and its Applications - Volume 435, Issue 12, 15 December 2011, Pages 3124-3138