کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4601030 1336873 2012 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Computing the ball size of frequency permutations under Chebyshev distance
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Computing the ball size of frequency permutations under Chebyshev distance
چکیده انگلیسی

Let be the set of all permutations over the multiset where n=mλ. A frequency permutation array (FPA) of minimum distance d is a subset of in which every two elements have distance at least d. FPAs have many applications related to error correcting codes. In coding theory, the Gilbert-Varshamov bound and the sphere-packing bound are derived from the size of balls of certain radii.We propose two efficient algorithms that compute the ball size of frequency permutations under Chebyshev distance. Here it is equivalent to computing the permanent of a special type of matrix, which generalizes the Toepliz matrix in some sense. Both methods extend previous known results. The first one runs in time and space. The second one runs in time and space. For small constants λ and d, both are efficient in time and use constant storage space.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 437, Issue 1, 1 July 2012, Pages 324-332