کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4601050 1336874 2011 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Partial matrices whose completions have ranks bounded below
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Partial matrices whose completions have ranks bounded below
چکیده انگلیسی

A partial matrix over a field F is a matrix whose entries are either elements of F or independent indeterminates. A completion of such a partial matrix is obtained by specifying values from F for the indeterminates. We determine the maximum possible number of indeterminates in a partial m×n matrix whose completions all have rank at least equal to a particular k, and we fully describe those examples in which this maximum is attained. Our main theoretical tool, which is developed in Section 2, is a duality relationship between affine spaces of matrices in which ranks are bounded below and affine spaces of matrices in which the (left or right) nullspaces of elements possess a certain covering property.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 435, Issue 9, 1 November 2011, Pages 2259-2271