کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4601050 | 1336874 | 2011 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Partial matrices whose completions have ranks bounded below
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A partial matrix over a field F is a matrix whose entries are either elements of F or independent indeterminates. A completion of such a partial matrix is obtained by specifying values from F for the indeterminates. We determine the maximum possible number of indeterminates in a partial m×n matrix whose completions all have rank at least equal to a particular k, and we fully describe those examples in which this maximum is attained. Our main theoretical tool, which is developed in Section 2, is a duality relationship between affine spaces of matrices in which ranks are bounded below and affine spaces of matrices in which the (left or right) nullspaces of elements possess a certain covering property.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 435, Issue 9, 1 November 2011, Pages 2259-2271
Journal: Linear Algebra and its Applications - Volume 435, Issue 9, 1 November 2011, Pages 2259-2271