کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4601146 1336876 2012 4 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Every invertible matrix is diagonally equivalent to a matrix with distinct eigenvalues
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Every invertible matrix is diagonally equivalent to a matrix with distinct eigenvalues
چکیده انگلیسی

We show that for every invertible n×n complex matrix A there is an n×n diagonal invertible D such that AD has distinct eigenvalues. Using this result, we affirm a conjecture of Feng, Li, and Huang that an n×n matrix is not diagonally equivalent to a matrix with distinct eigenvalues if and only if it is singular and all its principal minors of size n-1 are zero.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 436, Issue 9, 1 May 2012, Pages 3773-3776