کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4601157 | 1336877 | 2011 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The minimum semidefinite rank of the complement of partial k-trees
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
For a graph G=(V,E) with V={1,…,n}, let S(G) be the set of all real symmetric n×n matrices A=[ai,j] with ai,j≠0, i≠j if and only if ij∈E. We prove the following results. If G is the complement of a partial k-tree H, then there exists a positive semidefinite matrix A∈S(G) with rank(A)≤k+2. If, in addition, k≤3 or G is k-connected, then there exist positive semidefinite matrices A∈S(G) and B∈S(H) such that rank(A)+rank(B)≤n+2.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 434, Issue 6, 15 March 2011, Pages 1468-1474
Journal: Linear Algebra and its Applications - Volume 434, Issue 6, 15 March 2011, Pages 1468-1474