کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4601165 | 1336877 | 2011 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Spaces of matrices without non-zero eigenvalues in their field of definition, and a question of Szechtman
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let V be a vector space of dimension n over any field F. Extreme values for the possible dimension of a linear subspace of EndF(V) with a particular property are considered in two specific cases. It is shown that if E1 is a subspace of EndF(V) and there exists an endomorphism g of V, not in E1, such that for every hyperplane H of V some element of E1 agrees with g on H, then E1 has dimension at least . This answers a question that was posed by Szechtman in 2003. It is also shown that a linear subspace of Mn(F) in which no element possesses a non–zero eigenvalue in F may have dimension at most . The connection between these two properties, which arises from duality considerations, is discussed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 434, Issue 6, 15 March 2011, Pages 1580-1587
Journal: Linear Algebra and its Applications - Volume 434, Issue 6, 15 March 2011, Pages 1580-1587