کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4601178 1336878 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Construction of determinantal representation of trigonometric polynomials
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Construction of determinantal representation of trigonometric polynomials
چکیده انگلیسی

For a pair of n×n Hermitian matrices H and K, a real ternary homogeneous polynomial defined by F(t,x,y)=det(tIn+xH+yK) is hyperbolic with respect to (1,0,0). The Fiedler conjecture (or Lax conjecture) is recently affirmed, namely, for any real ternary hyperbolic polynomial F(t,x,y), there exist real symmetric matrices S1 and S2 such that F(t,x,y)=det(tIn+xS1+yS2). In this paper, we give a constructive proof of the existence of symmetric matrices for the ternary forms associated with trigonometric polynomials.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 435, Issue 6, 15 September 2011, Pages 1277-1284