کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4601204 1336879 2012 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Norm equalities in pre-Hilbert C*-modules
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Norm equalities in pre-Hilbert C*-modules
چکیده انگلیسی

We discuss the connection between the equality case in the triangle inequality for two elements x and y in a pre-Hilbert module (E,〈·,·〉) over the C∗-algebra A and the equality case in the corresponding Cauchy–Schwarz inequality. We firstly show that the triangle “equality” associated to the “rank one” operators θx,x and θy,y holds true if and only if ∥〈x,y〉∥A=∥x∥∥y∥. The special situations when 〈x,y〉 is a perturbation, by a scalar α, of an idempotent (∥x+y∥=∥x∥+∥y∥ iff ) or it has positive real part (∥x+y∥=∥x∥+∥y∥ iff ∥R〈x,y〉∥A=∥x∥∥y∥) are also considered. In the last part, we characterize Pythagoras’ equality in pre-Hilbert C∗-modules. Our results extend or improve some theorems due to L. Arambašić and R. Rajić.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 436, Issue 1, 1 January 2012, Pages 59-70