کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4601210 1336879 2012 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Is every nonsingular matrix diagonally equivalent to a matrix with all distinct eigenvalues?
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Is every nonsingular matrix diagonally equivalent to a matrix with all distinct eigenvalues?
چکیده انگلیسی

It is shown that a 2×2 complex matrix A is diagonally equivalent to a matrix with two distinct eigenvalues iff A is not strictly triangular. It is established in this paper that every 3×3 nonsingular matrix is diagonally equivalent to a matrix with 3 distinct eigenvalues. More precisely, a 3×3 matrix A is not diagonally equivalent to any matrix with 3 distinct eigenvalues iff detA=0 and each principal minor of A of order 2 is zero. It is conjectured that for all n⩾2, an n×n complex matrix is not diagonally equivalent to any matrix with n distinct eigenvalues iff detA=0 and every principal minor of A of order n-1 is zero.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 436, Issue 1, 1 January 2012, Pages 120-125