کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4601210 | 1336879 | 2012 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Is every nonsingular matrix diagonally equivalent to a matrix with all distinct eigenvalues?
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
It is shown that a 2×2 complex matrix A is diagonally equivalent to a matrix with two distinct eigenvalues iff A is not strictly triangular. It is established in this paper that every 3×3 nonsingular matrix is diagonally equivalent to a matrix with 3 distinct eigenvalues. More precisely, a 3×3 matrix A is not diagonally equivalent to any matrix with 3 distinct eigenvalues iff detA=0 and each principal minor of A of order 2 is zero. It is conjectured that for all n⩾2, an n×n complex matrix is not diagonally equivalent to any matrix with n distinct eigenvalues iff detA=0 and every principal minor of A of order n-1 is zero.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 436, Issue 1, 1 January 2012, Pages 120-125
Journal: Linear Algebra and its Applications - Volume 436, Issue 1, 1 January 2012, Pages 120-125