کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4601230 1336880 2011 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Frames for vector spaces and affine spaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Frames for vector spaces and affine spaces
چکیده انگلیسی

A finite frame for a finite dimensional Hilbert space is simply a spanning sequence. We show that the linear functionals given by the dual frame vectors do not depend on the inner product, and thus it is possible to extend the frame expansion (and other elements of frame theory) to any finite spanning sequence for a vector space. The corresponding coordinate functionals generalise the dual basis (the case when the vectors are linearly independent), and are characterised by the fact that the associated Gramian matrix is an orthogonal projection. Existing generalisations of the frame expansion to Banach spaces involve an analogue of the frame bounds and frame operator.The potential applications of our results are considerable. Whenever there is a natural spanning set for a vector space, computations can be done directly with it, in an efficient and stable way. We illustrate this with a diverse range of examples, including multivariate spline spaces, generalised barycentric coordinates, and vector spaces over the rationals, such as the cyclotomic fields.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 435, Issue 1, 1 July 2011, Pages 77-94