کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4601232 | 1336880 | 2011 | 11 صفحه PDF | دانلود رایگان |

We consider the following problem: Given a set of m×n real (or complex) matrices A1,…,AN, find an m×m orthogonal (or unitary) matrix P and an n×n orthogonal (or unitary) matrix Q such that P*A1Q,…,P*ANQ are in a common block-diagonal form with possibly rectangular diagonal blocks. We call this the simultaneous singular value decomposition (simultaneous SVD). The name is motivated by the fact that the special case with N=1, where a single matrix is given, reduces to the ordinary SVD. With the aid of the theory of *-algebra and bimodule it is shown that a finest simultaneous SVD is uniquely determined. An algorithm is proposed for finding the finest simultaneous SVD on the basis of recent algorithms of Murota–Kanno–Kojima–Kojima and Maehara–Murota for simultaneous block-diagonalization of square matrices under orthogonal (or unitary) similarity.
Journal: Linear Algebra and its Applications - Volume 435, Issue 1, 1 July 2011, Pages 106-116