کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4601289 1336883 2011 28 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A classification of sharp tridiagonal pairs
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
A classification of sharp tridiagonal pairs
چکیده انگلیسی

Let F denote a field and let V denote a vector space over F with finite positive dimension. We consider a pair of linear transformations A:V→V and A∗:V→V that satisfy the following conditions: (i) each of A,A∗ is diagonalizable; (ii) there exists an ordering of the eigenspaces of A such that A∗Vi⊆Vi-1+Vi+Vi+1 for 0⩽i⩽d, where V-1=0 and Vd+1=0; (iii) there exists an ordering of the eigenspaces of A∗ such that for 0⩽i⩽δ, where and ; (iv) there is no subspace W of V such that AW⊆W, A∗W⊆W, W≠0, W≠V. We call such a pair a tridiagonal pair on V. It is known that d=δ and for 0⩽i⩽d the dimensions of coincide. The pair A,A∗ is called sharp whenever . It is known that if F is algebraically closed then A,A∗ is sharp. In this paper we classify up to isomorphism the sharp tridiagonal pairs. As a corollary, we classify up to isomorphism the tridiagonal pairs over an algebraically closed field. We obtain these classifications by proving the μ-conjecture.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 435, Issue 8, 15 October 2011, Pages 1857-1884