کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4601346 | 1631156 | 2010 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A linear algebraic view of partition regular matrices
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Rado showed that a rational matrix is partition regular over N if and only if it satisfies the columns condition. We investigate linear algebraic properties of the columns condition, especially for oriented (vertex-arc) incidence matrices of directed graphs and for sign pattern matrices. It is established that the oriented incidence matrix of a directed graph Γ has the columns condition if and only if Γ is strongly connected, and in this case an algorithm is presented to find a partition of the columns of the oriented incidence matrix with the maximum number of cells. It is shown that a sign pattern matrix allows the columns condition if and only if each row is either all zeros or the row has both a + and −.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 433, Issues 11–12, 30 December 2010, Pages 1809-1820
Journal: Linear Algebra and its Applications - Volume 433, Issues 11–12, 30 December 2010, Pages 1809-1820