کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4601346 1631156 2010 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A linear algebraic view of partition regular matrices
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
A linear algebraic view of partition regular matrices
چکیده انگلیسی

Rado showed that a rational matrix is partition regular over N if and only if it satisfies the columns condition. We investigate linear algebraic properties of the columns condition, especially for oriented (vertex-arc) incidence matrices of directed graphs and for sign pattern matrices. It is established that the oriented incidence matrix of a directed graph Γ has the columns condition if and only if Γ is strongly connected, and in this case an algorithm is presented to find a partition of the columns of the oriented incidence matrix with the maximum number of cells. It is shown that a sign pattern matrix allows the columns condition if and only if each row is either all zeros or the row has both a + and −.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 433, Issues 11–12, 30 December 2010, Pages 1809-1820