کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4601429 1336888 2011 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Newton Procedure for several variables
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
The Newton Procedure for several variables
چکیده انگلیسی

Let us consider an equation of the formP(x,z)=zm+w1(x)zm-1+⋯+wm-1(x)z+wm(x)=0,where m>1m>1, n>1n>1, x=(x1⋯xn)x=(x1⋯xn) is a vector of variables, k   is an algebraically closed field of characteristic zero, wi(x)∈k〚x〛 and wm(x)≠0wm(x)≠0. We consider representations of its roots as generalized Puiseux power series, obtained by iterating the classical Newton procedure for one variable. The key result of this paper is the following:Theorem 1.The iteration of the classical Newton procedure for one variable gives rise to representations of all the roots of the equation above by generalized Puiseux power series in  x1/dx1/d,  d∈Z>0d∈Z>0, whose supports are contained in an n-dimensional, lex-positive strictly convex polyhedral cone (see Section 5).We must point out that the crucial result is not the existence of these representations, which is a well-known fact; but the fact that their supports are contained in such a special cone. We achieve the proof of this theorem by taking a suitable affine chart of a toric modification of the affine space.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 435, Issue 2, 15 July 2011, Pages 255–269
نویسندگان
, ,