کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4601464 | 1336889 | 2011 | 14 صفحه PDF | دانلود رایگان |

For the steady-state solution of an integral–differential equation from a two-dimensional model in transport theory, we shall derive and study a nonsymmetric algebraic Riccati equation B--XF--F+X+XB+X=0, where , and with a nonnegative matrix P, positive diagonal matrices D±, and nonnegative parameters f, and . We prove the existence of the minimal nonnegative solution X∗ under the physically reasonable assumption , and study its numerical computation by fixed-point iteration, Newton’s method and doubling. We shall also study several special cases; e.g. when and P is low-ranked, then is low-ranked and can be computed using more efficient iterative processes in U and V. Numerical examples will be given to illustrate our theoretical results.
Journal: Linear Algebra and its Applications - Volume 434, Issue 1, 1 January 2011, Pages 201-214